侯鹏
职  称
  • 研究员
电  话
  • 010-82108595
电子邮件
  • houpeng@caas.cn
创新团队
  • 作物栽培与生理
研 究 组
  • 玉米精准栽培与管理
研究中心
  • 作物栽培与耕作中心
教育经历
  • 2005/09 – 2008/06,山东农业大学,农学院作物栽培与耕作系,农学硕士,导师: 王空军教授,董树亭教授;
  • 2008/09 – 2012/06,中国农业大学,资源与环境学院植物营养系,农学博士,导师: 陈新平教授,张福锁教授,其中2010/10-2010/12,受国家教育部与德国教育部资 助,在德国Hohenheim大学进行合作研究。
工作经历
  • 2023/01 –至今,中国农业科学院作物科学研究所,作物栽培与耕作中心,研究员,博士生导师
  • 2017/01 –2022/12,中国农业科学院作物科学研究所,作物栽培与耕作中心,副研究员
  • 2012/07 –2016/12,中国农业科学院作物科学研究所,作物栽培与耕作中心,助研;
研究方向
  • 基于全国多点联网玉米试验,重点研究玉米高产栽培生理生态、资源高效利用,同时开展玉米生长模型的研究。
学术兼职
  • 中国植物营养与肥料学会理事;
  • 担任SCI期刊Crop Science 、Frontiers in Plant Science副主编(AE),Scientific Data、Journal of Agronomy and Crop Science、Agriculture 与Scientific Reports 编委。
荣誉称号
  • 国家级人才
  • 院级农科英才-“杰出青年英才”
获奖成果
  • 玉米密植高产水肥精准调控技术研发与推广应用,202212,2019-2021年度全国农牧渔业丰收奖,一等奖,排名5,证书编号:FCG-2022-1-371-05R,主要合作者:李少昆;王林;王永宏;梁晓玲;侯鹏;张万旭;刘智卓;白沙如拉;杜树海;黄立新;王锐;吴清亮;陈永生;张洪亮;姚振兴;国秀玲;李志伟;李博;徐喜俊;吴晓琴;马忠臣;李静;李中华;盛铁雍;黄东明
  • 玉米密植高产全程机械化绿色生产技术研究与应用,2016-2018年度全国农牧渔业丰收奖,合作奖,排名8,证书编号:FH-2019-15-08R,主要合作者:李少昆、赵冰梅、谢瑞芝、汤松、毕显杰、徐鸿、邱军、侯鹏、张新国、刘朝巍、张卫国、陈江鲁、赵如浪、勾玲、孙多鑫、肖春华、杨京京、陈永生、张振国、毛国锋、徐喜俊、杨小霞、鲁镇胜、王宇飞、孔融、李亚东、周广顺、王康武、韩东生、愈万兵
  • 中国农业科学院玉米栽培与生理创新团队,2018-2019年神农中华农业科技奖创新团队,一等,排名11,证书编号: 2019-TD01-1-R11,主要合作者:李少昆、赵明、谢瑞芝、王克如、董志强、马兴林、徐江、周文彬、李从峰、马玮、侯鹏、丁在松、明博、周宝元、段凤莹、闫鹏
承担项目
  • 1. 国家自然科学基金青年基金,项目主持人,经费23.76万元,项目名称:北方春玉米对光、温资源的响应机制及优化匹配,项目号:31501266;
  • 2. 国家自然科学基金面上项目,项目主持人,经费70万元,项目名称:跨区域条件下玉米生长与光、氮匹配的生理生态机制,项目号:31871558;
  • 3. 国家重点研发计划,课题主持人,负责经费950万元,项目名称:粮食主产区产量与效率层次差异消减技术途径综合评价,项目号:2016YFD0300110
  • 4. 科技部973计划,子课题主持人,负责经费100万元,项目名称:作物高产高效群体与关键生态因子的匹配及其调控,项目号:2015CB150401。
  • 5. 国家自然科学基金面上项目,项目主持人,经费70万元,项目名称:玉米新株型设计与产量潜力突破,项目号:32172118,202201-202512
  • 6. 国家重点研发计划,课题主持人,负责经费306万元,课题名称:作物增产反馈土壤培育的栽培调控原理与技术,项目号:2023YFD1900603,202312-202712
  • 7. 国家重点研发计划,子课题主持人,负责经费80万元,项目名称:松嫩平原春玉米规模化丰产增效及产业化技术研发与集成示范,项目号:2023YFD2301700,202311-202712
  • 8. 院级农科英才项目,负责经费120万元/每年,20240101-20281231
主要论文
  • Liu, G., Yang, Y., Guo, X., Liu, W., Xie, R., Ming, B., Xue, J., Wang, K., Li, S., Hou, P.*, 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha -1. Resources, Conservation and Recycling, 188 (2023), 106656.下载
  • Guo, X., Liu, W., Yang, Y., Liu, G., Ming, B., Xie, R., Wang, K., Li, S., Hou, P.*, 2023. Matching light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture下载
  • Liu, W., Liu, Y., Liu, G., Xie, R., Ming, B., Yang, Y., Guo, X., Wang, K., Xue, J., Wang, Y., Zhao, R., Zhang, W., Wang, Y., Bian, S., Ren, H., Zhao, X., Liu, P., Chang, J., Zhang, G., Liu, J., Yuan, L., Zhao, H., Shi, L., Zhang, L., Yu, L., Gao, J., Yu, X., Wang, Z., Shen, L., Ji, P., Yang, S., Zhang, Z., Xue, J., Ma, X., Wang, X., Lu, T., Dong, B., Li, G., Ma, B., Li, J., Deng, X., Liu, Y., Yang, Q., Jia, C., Chen, X., Fu, H., Li, S., Hou, P.*, 2022. Estimation of maize straw production and appropriate straw return rate in China. Agriculture, Ecosystems & Environment, 328.下载
  • Liu, G., Yang, Y., Guo, X., Liu, W., Xie, R., Ming, B., Xue, J., Wang, K., Li, S., Hou, P.*, 2022. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Research, 283, 108544.下载
  • Liu, G., Yang, H., Xie, R., Yang, Y., Liu, W., Guo, X., Xue, J., Ming, B., Wang, K., Hou, P.*, Li, S., 2021. Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China. Field Crops Research, 2021, 270:108223下载
  • Liu, W., Liu, G., Yang, Y., Guo, X., Ming, B., Xie, R., Liu, Y., Wang, K., Hou, P.*, Li, S., 2021. Spatial variation of maize height morphological traits for the same cultivars at a large agroecological scale. European Journal of Agronomy. 130, 126349.下载
  • Hou, P., Liu, Y., Liu, W., Yang, H., Xie, R., Wang, K., Ming, B., Liu, G., Xue, J., Wang, Y., Zhao, R., Zhang, W., Wang, Y., Bian, S., Ren, H., Zhao, X., Liu, P., Chang, J., Zhang, G., Liu, J., Yuan, L., Zhao, H., Shi, L., Zhang, L., Yu, L., Gao, J., Yu, X., Wang, Z., Shen, L., Ji, P., Yang, S., Zhang, Z., Xue, J., Ma, X., Wang, X., Lu, T., Dong, B., Li, G., Ma, B., Li, J., Deng, X., Liu, Y., Yang, Q., Jia, C., Chen, X., Fu, H., Li, S., 2021. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation and Recycling, 174 (5), 105811.下载
  • Hou, P., Liu, Y., Liu, W., Liu, G., Xie, R., Wang, K., Ming, B., Wang, Y., Zhao, R., Zhang, W., Wang, Y., Bian, S., Ren, H., Zhao, X., Liu, P., Chang, J., Zhang, G., Liu, J., Yuan, L., Zhao, H., Shi, L., Zhang, L., Yu, L., Gao, J., Yu, X., Shen, L., Yang, S., Zhang, Z., Xue, J., Ma, X., Wang, X., Lu, T., Dong, B., Li, G., Ma, B., Li, J., Deng, X., Liu, Y., Yang, Q., Fu, H., Liu, X., Chen, X., Huang, C., Li, S., 2020. How to increase maize production without extra nitrogen input. Resources Conservation and Recycling, 160, 104913下载
  • Liu, G, Yang Y, Liu W, Guo X, Xue J, Xie R, Ming B, Wang K, Hou P*, Li S. 2020. Leaf Removal Affects Maize Morphology and Grain Yield[J]. Agronomy, 10(2): 269.下载
  • Liu, G., Hou, P.*, Xie, R., Ming, B., Wang, K., Liu, W., Yang, Y., Xu, W., Chen, J., Li, S.*, 2019. Nitrogen Uptake and Response to Radiation Distribution in the Canopy of High-Yield Maize. Crop Science, 59, 1236-1247下载
  • Yang, Y., Xu, W., Hou, P.*, Liu, G., Liu, W., Wang, Y., Zhao, R., Ming, B., Xie, R., Wang, K., Li, S.*, 2019. Improving maize grain yield by matching maize growth and solar radiation. SCI REP-UK, 9, 3635.下载
  • Liu, G., Hou, P.*, Xie, R., ,Ming, B., Wang, K., Xu, W., Liu, W., Yang, Y., Li, S.* 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha −1. Field Crops Research, 213, 221-230.下载
  • Xu, W., Liu, C., Wang, K., Xie, R., Ming, B., Wang, Y., Zhang, G., Liu, G., Zhao, R., Fan, P., Li, S.*, Hou, P.* 2017. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research, 212,126-134.下载
  • Liu, Y.#, Hou, P.#, Xie, R., Hao, W., Li, S., Mei, X. 2015. Spatial variation and improving measures of the utilization efficiency of accumulated temperature. Crop Science, 55:1806–1817.下载
  • Hou, P., Liu, Y., Xie, R., Ming, B., Ma, D., Li, S. ., Mei, X. 2014. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Research, 158: 55-64.下载
  • Hou, P., Cui, Z., Bu, L. Yang, H. Zhang, F. Li, S. 2014. Evaluation of a modified hybrid-maize model incorporating a newly developed module of plastic film mulching. Crop Science, 54: 2796-2804.下载
  • Liu, Y.#;Hou, P.#, Xie, R., Li, S., Zhang, H., Ming, B., Ma, D., Liang, S. 2013. Spatial adaptabilities of spring maize to variation of climatic conditions.Crop Science, 53: 1693-1703.下载
  • Hou, P., Gao, Q., Xie, R., Li, S., Meng, Q., Kirkby, E.A., Römheld, V., Müller, T., Zhang, F., Cui, Z., Chen, X. 2012. Grain Yields in Relation to N Requirement : Optimizing Nitrogen Management for Spring Maize Grown in China. Field Crops Research, 129:1-6.下载
  • 侯鹏,陈新平,崔振岭,王伟,王立娜,唐锦福,张福锁. 2013. 基于Hybrid-Maize 模型的黑龙江春玉米灌溉增产潜力评估. 农业工程学报,29:103-112.下载
  • Meng, Q., Hou, P., Wu, L., Chen, X., Cui, Z., Zhang, F. 2013. Understanding production potentials and yield gaps in intensive maize production in China.Field Crops Research, 143: 91-97.下载
  • Meng, Q., Hou, P., Lobell, D., Wang, H., Cui, Z., Zhang, F., Chen, X. 2014. The benefits of recent warming for maize production in high latitude China. Climatic Change, 122: 341-349.下载
  • Chen, X., Cui, Z., Vitousek, P.M., Cassman, K.G., Matson, P.A., Bai, J., Meng, Q., Hou, P., Yue, S., Römheld, V., Zhang F. 2011. Integrated soil–crop system management for food security. P.oc. Natl. Acad. Sci. 2011.108: 6399-6404.下载
授权专利
  • 侯鹏、刘广周、杨云山、李少昆,一种光辐射资源优化匹配的玉米超高产栽培方法,国家发明专利,已授权,2024